## 1X/1.5X/2x Charge Pump White LED Driver

## Features

- $\pm 1.5 \%$ LED Current Matching
- High Efficiency Up to $90 \%$ Over Li-ion Battery Discharge
- Output Current Up to 30mA Per LED
- $\quad 2.7 \mathrm{~V}$ to 5.5 V Operating Voltage
- Allow to Turn On or Off a Combination of LEDs
- $1 x / 1.5 x / 2 x$ Charge Pump Modes
- Low Shutdown Current: $2 \mu \mathrm{~A}$ Maximum
- Low Input Ripple and EMI
- Internal Soft-Start Limits Inrush Current
- Short Circuit Current Limit
- Thermal Shutdown Protection
- Output Over-Voltage Protection
- 16-Pin QFN Package
- Lead Free and Green Devices Available (RoHS Compliant)


## Applications

- Cellular Phone White LED Back Light
- Portable Device
- PDA, Handheld Computer
- DSC


## General Description

The APW7000 is a high efficiency charge pump white LED driver; the device drives up to four white LEDs with regulated constant current for uniform intensity. The supply voltage ranges from 2.7 V to 5.5 V and it is optimized for a Li-ion battery application. The APW7000 operates in 1x, $1.5 x$, and $2 x$ charge pump modes and automatically switches the charge pump modes depend on the input voltage to maintain the required power for high power efficiency. The APW7000 provides up to 30 mA per LED, for a total of 120 mA and allows several methods such as a PWM signal on the CTRLO pin for LED dimming. Three control logic pins allow to disable or enable a combination of LEDs. The supply current is only 2 mA in $2 x$ mode, and the EN pin allows the device to enter shutdown mode with $2 \mu \mathrm{~A}$ quiescent current. The APW7000 switches at 1 MHz frequency and only requires four $1 \mu \mathrm{~F}$ ceramic capacitors and one resistor, and ensures low input current ripple and EMI.
The APW7000 is available in a 16 -pin QFN package.

## Pin Configuration



[^0]
## Ordering and Marking I nformation



Note: ANPEC lead-free products contain molding compounds/die attach materials and 100\% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free ( Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

## Absolute Maximum Ratings (Note 1, 2)

| Symbol | Parameter | Rating | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\text {OUT }}$ | VOUT to GND | -0.3 to +6 |  |
| $\mathrm{~V}_{\text {IN }}$ | VIN to GND | -0.3 to +6 |  |
| $\mathrm{~V}_{\mathrm{C} 1+}, \mathrm{V}_{\mathrm{C} 1-,} \mathrm{V}_{\mathrm{C} 2+}, \mathrm{V}_{\mathrm{C} 2-}$ | $\mathrm{C} 1+, \mathrm{C} 1-, \mathrm{C} 2+$, C2- to GND | -0.3 to +6 | V |
| $\mathrm{~V}_{\text {ILED1-4 }}$ | ILED1-4 to GND | -0.3 to +6 | V |
| $\mathrm{~V}_{\text {CTRLo/1/2, }} \mathrm{V}_{\mathrm{EN}}$ | CTRL0/1/2, EN to GND | -0.3 to +6 | V |
| $\mathrm{~V}_{\text {ISET }}$ | ISET to GND | -0.3 to 2 | V |
| $\mathrm{~T}_{\mathrm{J}}$ | Maximum Junction Temperature | +150 | V |
| $\mathrm{~T}_{\text {STG }}$ | Storage Temperature | $-65 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {SDR }}$ | Maximum Lead Soldering Temperature, 10 Seconds | ${ }^{\circ} \mathrm{C}$ |  |

Note 1: Stresses beyond the absolute maximum rating may damage the device and operating in the absolute maximum rating conditions for extended periods may affect device reliability.
Note 2: The maximum allowable power dissipation at any $T_{A}$ (ambient temperature) is calculated using: $P_{D(\max )}=\left(T_{J}-T_{A}\right) / \theta_{J A} ; T_{J}=125^{\circ} C$. Exceeding the maximum allowable power dissipation will result in excessive die temperature.

## Thermal Characteristics

| Symbol | Parameter | Typical Value | Unit |
| :---: | :---: | :---: | :---: |
| $R_{\text {өJA }}$ | Thermal Resistance-Junction to Ambient | 40 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## Recommended Operating Conditions

| Symbol | Parameter | Rating | Unit |
| :---: | :---: | :---: | :---: |
| $V_{\text {IN }}$ | Input Voltage | 2.8 to 4.5 | V |
| $\mathrm{V}_{\text {OUT }}$ | Output Voltage | 3 to 4 | V |
| $\mathrm{I}_{\text {Led }}$ | LED Current | 5 to 30 | mA |
| lout | Output Current, $\mathrm{V}_{\text {IN }}>3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=3.1 \mathrm{~V}$, 1 x mode | 180 | mA |
|  | Output Current, $3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}>3.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=3.1 \mathrm{~V}, 1.5 \mathrm{x}$ mode | 120 |  |
|  | Output Current, $3.1 \mathrm{~V}<\mathrm{V}_{\text {IN }}>2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=3.1 \mathrm{~V}$, 2 x mode | 90 |  |
| $\mathrm{T}_{\text {A }}$ | Ambient Temperature | -40 to 85 | ${ }^{\circ} \mathrm{C}$ |

## Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=2.85$ to $5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=\mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}(\mathrm{ESR}=0.03 \Omega), \mathrm{I}_{\mathrm{LED}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

| Symbol | Parameter | Test Conditions | APW7000 |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| $\mathrm{V}_{\text {IN }}$ | Input Voltage |  | 2.7 | - | 5.5 | V |
| $\mathrm{V}_{\text {UVLO }}$ | Under-voltage Lockout Threshold | $\mathrm{V}_{\text {IN }}$ falling | 2.2 | 2.4 | 2.6 | V |
|  | Under-voltage Lockout Hysteresis |  | - | 50 | - | mV |
| $\mathrm{I}_{\mathrm{Q}}$ | Quiescent Current | In 1.5x/2x mode | - | 2 | 4 | mA |
|  |  | No switching in 1 x mode | - | 0.5 | 1 | mA |
|  |  | EN=0 | - | 0.1 | 2 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {Led-ERR }}$ | LED Current Accuracy | $5 \mathrm{~mA}<\mathrm{L}_{\text {Led }}<30 \mathrm{~mA}{ }^{\text {(Note 3) }}$ | - | $\pm 2$ | $\pm 8$ | \% |
|  | Current Matching | $5 \mathrm{~mA}<\mathrm{l}_{\text {LED }}<30 \mathrm{~mA}{ }^{\text {(Note 4) }}$ | - | $\pm 1.5$ | $\pm 5$ | \% |
| $\mathrm{I}_{\text {ISET }}$ | ISET Current |  | 5 | - | 1000 | $\mu \mathrm{A}$ |
|  | ISET to LED Current Ratio | $\begin{aligned} & \mathrm{I}_{\text {LLED }} /\left(1.2 \mathrm{~V} / \mathrm{R}_{\text {EST }}\right) 5 \mathrm{~mA}<\mathrm{L}_{\text {LED }}<30 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ | 370 | 400 | 420 |  |
| $\mathrm{V}_{\text {ILED-th }}$ | ILED Threshold Voltage | $\mathrm{V}_{\text {ILEd }}$ falling | - | 100 | - | mV |
|  | $1.5 x$ mode to $1 x$ mode Transition Hysteresis | $\mathrm{V}_{\text {IN }}$ rising, $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ | - | 300 | - | mV |
|  | $2 x$ mode to $1.5 x$ mode Transition Hysteresis | $\mathrm{V}_{\text {IN }}$ rising, $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}$ | - | 300 | - | mV |
| Fosc | Switching Frequency |  | 0.8 | 1 | 1.2 | MHz |
| $\mathrm{R}_{\text {OUT }}$ | Open Loop VOUT Resistance | 1 x mode ( $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ ) / I Iout | - | 1.6 | 3 | $\Omega$ |
|  |  | 1.5 x mode ( $1.5 \times \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ ) / $\mathrm{l}_{\text {OUT }}$ | - | 7 | 12 |  |
|  |  | 2 x mode ( $2 \times \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ ) / I Iout | - | 16 | 28 |  |
| $\mathrm{I}_{\text {SHORT }}$ | Short Circuit Current Limit | $\mathrm{V}_{\text {OUT }}<1 \mathrm{~V}$ | - | 40 | - | mA |
| $\mathrm{V}_{\text {OVP }}$ | OVP Threshold |  | 5 | 5.5 | 6 |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Logic Pins High Threshold |  | 1.3 | 0.7 | - | V |
| $\mathrm{V}_{\text {IL }}$ | Logic Pins Low Threshold |  | - | 0.6 | 0.3 | V |
| $\mathrm{I}_{\mathrm{H}}$ | Logic Pins High Current | $\mathrm{V}_{\mathrm{IH}}=\mathrm{VIN}$ | - | - | 1 | $\mu \mathrm{A}$ |
| ILL | Logic Pins Low Current | $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$ | - | - | 1 | $\mu \mathrm{A}$ |
|  | Thermal Shutdown |  | - | 150 | - | ${ }^{\circ} \mathrm{C}$ |
|  | Thermal Shutdown Hysteresis |  | - | 20 | - | ${ }^{\circ} \mathrm{C}$ |

Note 3: LED current accuracy is defined as: $\pm\left(I_{\text {Led-measured }}-I_{\text {Led-SET }}\right) / I_{\text {Led-set }}$
Note 4: LED current matching is defined as: $\pm\left(I_{\text {Led-max }}-I_{\text {LED-min }}\right) /\left(I_{\text {Led-max }}+I_{\text {Led-min }}\right)$

## Typical Operating Characteristics



## Typical Operating Characteristics (Cont.)



## Typical Operating Characteristics (Cont.)



## Typical Operating Characteristics (Cont.)



TIME ( $0.1 \mathrm{~ms} / \mathrm{div}$ )
Dimming in $1.5 x$ Mode


TIME (2ms/div)
OVP Even with LED Open Circuit


TIME ( $0.2 \mathrm{~ms} / \mathrm{div}$ )

Dimming in 1x Mode


TIME (2ms/div)
Dimming in 2x Mode


TIME (2ms/div)
Line Transient Response in 1x to 1.5 x Mode


TIME ( $0.1 \mathrm{~ms} / \mathrm{div}$ )

## Typical Operating Characteristics (Cont.)

## Line Transient Response in 1.5 x to 2 x Mode



TIME ( $0.1 \mathrm{~ms} / \mathrm{div}$ )

## Pin Description

| PIN |  | FUNCTION |
| :---: | :---: | :---: |
| NO. | NAME |  |
| 1 | EN | Enable Input Pin. The EN pin is an active high Control. Pull EN pin above 1.3 V to enable the device; pull EN pin below 0.3 V to disable the device. |
| 2 | CTRLO | LED On/Off Control Pin. Allow disabling or enabling a combination of LEDs. |
| 3 | CTRL1 | LED On/Off Control Pin. Allow disabling or enabling a combination of LEDs. |
| 4 | CTRL2 | LED On/Off Control Pin. Allow disabling or enabling a combination of LEDs. |
| 5 | ISET | LED Current Set Input. Connect a resistor from ISET to GND to set the LED current. VISET is typically 1.2V. |
| 6 | VOUT | Output Voltage Pin. Connect VOUT to the LED anode. Connect a $1 \mu \mathrm{~F}$ capacitor from VOUT to GND. |
| 7 | VIN | Supply Voltage Input Pin. Connect a $1 \mu \mathrm{~F}$ capacitor from VIN to GND. |
| 8 | C2+ | Bucket Capacitor1 Positive Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor from $\mathrm{C} 2+$ to $\mathrm{C} 2-$. |
| 9 | C2- | Bucket Capacitor1 Negative Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor from $\mathrm{C} 2+$ to $\mathrm{C} 2-$. |
| 10 | C1+ | Bucket Capacitor1 Positive Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor from $\mathrm{C} 1+$ to $\mathrm{C} 1-$ - |
| 11 | C1- | Bucket Capacitor1 Negative Terminal. Connect a $1 \mu \mathrm{~F}$ capacitor from C1+ to C1-. |
| 12 | GND | Device Ground Pin. |
| 13 | ILED4 | LEDs Cathode Connection. The LED current flows from VOUT through LED into ILED_ pin. The charge pump regulates the lowest $\mathrm{V}_{\text {ILED }}$ to 180 mV . Connect ILED_ pin to VOUT if the LED is not used. |
| 14 | ILED3 | LEDs Cathode Connection. The LED current flows from VOUT through LED into ILED_ pin. The charge pump regulates the lowest $\mathrm{V}_{\text {ILED }}$ to 180 mV . Connect ILED_ pin to VOUT if the LED is not used. |
| 15 | ILED2 | LEDs Cathode Connection. The LED current flows from VOUT through LED into ILED_ pin. The charge pump regulates the lowest $\mathrm{V}_{\text {ILED }}$ to 180 mV . Connect ILED_ pin to VOUT if the LED is not used. |
| 16 | ILED1 | LEDs Cathode Connection. The LED current flows from VOUT through LED into ILED_ pin. The charge pump regulates the lowest $\mathrm{V}_{\text {ILED }}$ to 180 mV . Connect ILED_ pin to VOUT if the LED is not used. |

## Block Diagram



## Typical Application Circuit



## Function Description

## Soft-Start

The APW7000 provides the soft-start function to limit the inrush current during startup. When the input voltage is supplied to the device and exceeds the UVLO voltage, the output capacitor is charged directly from input with a limited current source. Approximate $100 \mu$ s after the output voltage approaches the input voltage, the device starts to provide the programmed LED current and determines which of 1 x , and 1.5 x , or 2 x mode is required. When the programmed LED current can be reached with $1 x$ mode, the soft-start is completed and the device operates in 1 x mode. When the programmed LED current cannot be reached, the charge pump goes into $1.5 x$ mode. If the $1.5 x$ mode charge pump cannot suffice for the LED current need, the charge pump will switch to $2 x$ mode.

## Mode Transition

The APW7000 operates in $1 \mathrm{x}, 1.5 \mathrm{x}$ and 2 x charge pump modes and automatically switches the charge pump modes depend on the input voltage to main tain the required power for high power efficiency. If the APW7000 operates in 1x mode, the VOUT is pulled up to VIN. When VIN decreases, the VILED will decease to maintain the regulated LED current. Until VILED is below 100 mV , the device will switch to $1.5 x$ mode. In $1.5 x$ mode, the VILED is regulated to 0.18 V , and the output voltage is $\mathrm{VF}+0.18 \mathrm{~V}$. If VIN continues to decrease until VILED is below 100 mV again, the device will switch to $2 x$ mode. When the VIN rises and reaches by approximately VOUT-300mV, the APW7000 switches back to $1.5 x$ mode. If the VIN continues to rise and reaches by approximately VOUT +300 mV , the APW7000 switches back to $1 x$ mode. The $2 x$ charge pump is enough to suffice the White LED for a Li-ion battery application. The APW7000 ensures that in the 1x mode for as long as possible to increase the efficiency and extend the operating range by using the $2 x$ mode. The transition voltages from 1 x to 1.5 x and 1.5 x to 2 x are given by:
VTRANS1X $=\mathrm{VF}+0.1 \mathrm{~V}+$ (IOUT $x$ ROUT1X)
VTRANS1.5X $=[\mathrm{VF}+0.1 \mathrm{~V}+($ IOUT $\times$ ROUT1.5X) $] / 1.5$
where VF is the forward voltage of LED
IOUT is the output current
ROUT1X is the output impedance in 1 x mode $=1.6 \Omega$
ROUT1.5X is the output impedance in 1.5 x mode $=7 \Omega$

## Control Logic Pins

The APW7000 provides three logic input pins to enable or disable a combination of LEDs. Table1 shows the truth table of the logic pins. If the LED channels are not used, connecting the ILED pins to VOUT to turn off the respective LED channels.

| Control Logic Pin |  |  | LED Status |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CTRL2 | CTRL1 | CTRL0 | LED4 | LED3 | LED2 | LED1 |
| 0 | 0 | 0 | OFF | OFF | OFF | ON |
| 0 | 0 | 1 | OFF | OFF | ON | OFF |
| 0 | 1 | 0 | OFF | ON | OFF | OFF |
| 0 | 1 | 1 | ON | OFF | OFF | OFF |
| 1 | 0 | 0 | OFF | OFF | ON | ON |
| 1 | 0 | 1 | OFF | ON | ON | ON |
| 1 | 1 | 0 | ON | ON | ON | ON |
| 1 | 1 | 1 | OFF | OFF | OFF | OFF |

Table1. The Truth Table of Control Logic Pins

## LED Current Setting

Connect a resistor from ISET pin to GND to set the LED current. The ISET voltage is typically 1.2 V , and the LED current is typically 400 times the current through the ISET resistor. The LED current is given by:

$$
\mathrm{RsET}=\frac{400 \times 1.2 \mathrm{~V}}{\mathrm{ILED}}
$$

The APW7000 provides up to 30 mA of LED current per LED and the device has a max current matching of $\pm 5 \%$ between any two LED currents and a max current accuracy of $\pm 8 \%$. If high accuracy is required, using a $1 \%$ precision surface mount resistor for the need.

| ILED (mA) | Rset (k $\Omega$ ) |
| :---: | :---: |
| 5 | 92 |
| 10 | 47 |
| 15 | 32 |
| 20 | 24 |
| 30 | 16.5 |

Table2. $\mathrm{R}_{\text {SET }}$ Value Selection

## Function Description (Cont.)

## LED Current Setting (Cont.)



Figure 1. $\mathrm{R}_{\text {SET }}$ Value vs. LED Current

## Shutdown/Enable

Pull the EN above 1.3 V to enable the device and pull EN pin below 0.3 V to disable the device. In shutdown mode, all internal control circuits are turned off and the quiescent current is below $2 \mu \mathrm{~A}$. When the device exits shutdown mode, the output has soft-start function as the input voltage startup.

## Over-Voltage Protection

If any of LEDs is failed or unused LED channel is not connected to the VOUT, the charge pump mode will go into $2 x$ mode and the output voltage will be pumped to 2 times the input voltage. If the output voltage is over 5.5 V , the over-voltage protection circuit will limit the output voltage to approximately 5.5 V .

## Application Information

## Capacitor Selection

For lower input and output voltage ripples, both input and output capacitors should be larger values and lower ESR capacitors. However, the larger output capacitor values will increase the soft-start time. The lower charge pump flying capacitors values and ESR improve the efficiency, but lower capacitor values may limit the LED's currents at low input voltage.
It is recommended that the low ESR and low variation over temperature, such as the ceramic capacitors with X7R or X5R and the value is $1 \mu \mathrm{~F}$ for the input capacitor, output capacitor, and the charge pump flying capacitors.

## Brightness Control

1. PWM dimming using CTRL0, CTRL1, CTRL2

The first method for dimming the LEDs is to apply a PWM signal into the CTRLO, CTRL1, and CTRL2 pins. Figure2 shows the application circuit. The average LED current is proportional to the PWM signal duty cycle. Note that the frequency of PWM signal will affect the minimum dimming duty. Figure3 shows the LED current vs. dimming frequency and dimming duty, the recommend dimming frequency is below 10 kHz . The average LED current is calculated by the following equation:

$$
\mathrm{L}_{\mathrm{LED}(\mathrm{avg})}=\frac{\text { toff } \times \mathrm{I}_{\mathrm{LED}(\max )}}{\text { ton }+ \text { toff }}
$$

Where:
$\mathrm{I}_{\text {LED(max) }}$ is programmed LED current by ISET pin toff is the off time of the PWM signal ton is the on time of the PWM signal


Figure 2. PWM Dimming Application Circuit


Figure 3. PWM Dimming Frequency vs. LED Current
2. Analog dimming with analog voltage

The second method for dimming the LEDs is to apply a voltage through a resistor into the ISET pin. The variation of LED current is proportional to the variation of the analog voltage. If the resistor values are chosen correctly, the analog control voltage varies the output current from 0 mA to full LED current. Figure 4 shows the application circuit. See the table2 and choose the required maximum LED current and the corresponsive $\mathrm{R}_{\text {SET }}$ value, using the below equation to calculate the values of R1 and R2, note that the $\mathrm{V}_{\mathrm{ADJ}}$ will need to be greater than 1.2 V .

$$
\frac{V_{A D J}}{R 1}=\frac{\left(V_{A D J}-V_{I S E T}\right)}{R 2}+\frac{V_{A D J}}{R_{S E T}}
$$

Where: $\mathrm{V}_{\text {ISET }}=1.2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{ADJ}}=$ the analog voltage for dimming the LEDs
$R_{\text {SET }}=$ the equivalent RSET resistance (see table 2).


Figure 4. Analog Voltage Dimming Application Circuit

## Application Information (Cont.)

## Brightness Control (Cont.)

3. Digital dimming with external NMOS transistors

The third method for dimming the LEDs is to change the equivalent resistance for $\mathrm{R}_{\text {SET }}$ with the external NMOS transistors. The equivalent resistance is the parallel combinations of the R1, R2, R3, and R4. R4 is always connected and selected for the minimum LED current. Figure 5 shows the application circuit.


Figure 5. Digital Dimming Application Circuit

## 4. PWM dimming with EN pin

Another method for dimming the LEDs is to apply a PWM signal into the EN pin. The average LED current is proportional to the PWM signal duty cycle. Note that the frequency of PWM signal will affect the minimum dimming duty. The recommend dimming frequency is between 100 Hz and 1 kHz . The average LED current is calculated by the following equation:

$$
\mathrm{L}_{\text {LED(avg) }}=\frac{\operatorname{ton} \times \mathrm{I}_{\mathrm{LED}(\max )}}{\text { ton }+ \text { toff }}
$$

## Where:

$\mathrm{I}_{\text {LED(max) }}$ is programmed LED current by ISET pin
toff is the off time of the PWM signal
ton is the on time of the PWM signal

## Layout Consideration

The APW7000 is a high frequency charge pump for white LED driver and requires some care when laying out the printed circuit board. The metal GND pad of the bottom of the package must be soldered to the PCB and connected to the GND plane on the backside through several thermal vias. Place the CIN, COUT, C1, and C2 as close to IC as possible for reducing the switching noise.

## Package Information

QFN4x4-16


| $S$YMC | QFN4x4-16 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MILLIMETERS |  | INCHES |  |
|  | MIN. | MAX. | MIN. | MAX. |
| A | 0.80 | 1.00 | 0.031 | 0.039 |
| A1 | 0.00 | 0.05 | 0.000 | 0.002 |
| A3 | 0.20 REF |  | 0.008 REF |  |
| b | 0.25 | 0.35 | 0.010 | 0.014 |
| D | 3.90 | 4.10 | 0.154 | 0.161 |
| D2 | 2.10 | 2.50 | 0.083 | 0.098 |
| E | 3.90 | 4.10 | 0.154 | 0.161 |
| E2 | 2.10 | 2.50 | 0.083 | 0.098 |
| e | 0.65 BSC |  | 0.026 BSC |  |
| L | 0.30 | 0.50 | 0.012 | 0.020 |
| K | 0.20 |  | 0.008 |  |

## Carrier Tape \& Reel Dimensions



| Application | $\mathbf{A}$ | $\mathbf{H}$ | $\mathbf{T 1}$ | $\mathbf{C}$ | $\mathbf{d}$ | $\mathbf{D}$ | $\mathbf{W}$ | E1 | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| QFN4x4-16 | $330.0 \pm 2.00$ | 50 MIN. | $12.4+2.00$ <br> -0.00 | $13.0+0.50$ <br> -0.20 | 1.5 MIN. | 20.2 MIN. | $12.0 \pm 0.30$ | $1.75 \pm 0.10$ | $5.5 \pm 0.05$ |
|  | P0 | P1 | $\mathbf{P 2}$ | $\mathbf{D 0}$ | $\mathbf{D 1}$ | $\mathbf{T}$ | $\mathbf{A 0}$ | B0 | K0 |
|  | $4.0 \pm 0.10$ | $8.0 \pm 0.10$ | $2.0 \pm 0.05$ | $1.5+0.10$ <br> -0.00 | 1.5 MIN. | $0.6+0.00$ <br> -0.40 | $4.30 \pm 0.20$ | $4.30 \pm 0.20$ | $1.30 \pm 0.20$ |

(mm)

## Devices Per Unit

| Package Type | Unit | Quantity |
| :---: | :---: | :---: |
| QFN4x4-16 | Tape \& Reel | 3000 |

## Taping Direction Information

## QFN4x4-16



## Classification Profile



## Classification Reflow Profiles

| Profile Feature | Sn-Pb Eutectic Assembly | Pb-Free Assembly |
| :---: | :---: | :---: |
| Preheat \& Soak <br> Temperature min ( $\mathrm{T}_{\text {smin }}$ ) Temperature max ( $\mathrm{T}_{\text {smax }}$ ) Time ( $\mathrm{T}_{\text {smin }}$ to $\mathrm{T}_{\text {smax }}$ ) ( $\mathrm{t}_{\mathrm{s}}$ ) | $\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$ | $\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$ |
| Average ramp-up rate ( $\mathrm{T}_{\text {smax }}$ to $\mathrm{T}_{\mathrm{P}}$ ) | $3^{\circ} \mathrm{C} /$ second max. | $3^{\circ} \mathrm{C} /$ second max. |
| Liquidous temperature ( $\mathrm{T}_{\mathrm{L}}$ ) Time at liquidous ( $\mathrm{t}_{\mathrm{L}}$ ) | $\begin{gathered} 183{ }^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$ | $\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$ |
| $\begin{array}{l}\text { Peak package body Temperature } \\ \left(T_{p}\right)^{*}\end{array}$ | See Classification Temp in table 1 | See Classification Temp in table 2 |
| Time ( tp $\left.^{2}\right)^{* *}$ within $5^{\circ} \mathrm{C}$ of the specified classification temperature ( $\mathrm{T}_{\mathrm{c}}$ ) | 20** seconds | 30** seconds |
| Average ramp-down rate ( $\mathrm{T}_{\mathrm{p}}$ to $\mathrm{T}_{\text {smax }}$ ) | $6^{\circ} \mathrm{C} /$ second max. | $6^{\circ} \mathrm{C} /$ second max. |
| Time $25^{\circ} \mathrm{C}$ to peak temperature | 6 minutes max. | 8 minutes max. |
| * Tolerance for peak profile Temperature $\left(T_{p}\right)$ is defined as a supplier minimum and a user maximum. <br> ** Tolerance for time at peak profile temperature ( $\mathrm{t}_{\mathrm{p}}$ ) is defined as a supplier minimum and a user maximum. |  |  |

Table 1. SnPb Eutectic Process - Classification Temperatures (Tc)

| Package <br> Thickness | Volume $\mathbf{~ m m}^{\mathbf{3}}$ <br> $<350$ | Volume $\mathbf{m m}^{\mathbf{3}}$ <br> $\geq 350$ |
| :---: | :---: | :---: |
| $<2.5 \mathrm{~mm}$ | $235^{\circ} \mathrm{C}$ | $220^{\circ} \mathrm{C}$ |
| $\geq 2.5 \mathrm{~mm}$ | $220^{\circ} \mathrm{C}$ | $220^{\circ} \mathrm{C}$ |

Table 2. Pb-free Process - Classification Temperatures (Tc)

| Package <br> Thickness | Volume $\mathbf{m m}^{\mathbf{3}}$ <br> $<\mathbf{3 5 0}$ | ${\text { Volume } \mathbf{~ m m}^{\mathbf{3}}}^{\mathbf{3 5 0}} \mathbf{2 0 0 0}$ | ${\text { Volume } \mathbf{~ m m ~}^{\mathbf{3}}}^{\boldsymbol{> 2 0 0 0}}$ |
| :---: | :---: | :---: | :---: |
| $<1.6 \mathrm{~mm}$ | $260^{\circ} \mathrm{C}$ | $260^{\circ} \mathrm{C}$ | $260^{\circ} \mathrm{C}$ |
| $1.6 \mathrm{~mm}-2.5 \mathrm{~mm}$ | $260^{\circ} \mathrm{C}$ | $250^{\circ} \mathrm{C}$ | $245^{\circ} \mathrm{C}$ |
| $\geq 2.5 \mathrm{~mm}$ | $250^{\circ} \mathrm{C}$ | $245^{\circ} \mathrm{C}$ | $245^{\circ} \mathrm{C}$ |

## Reliability Test Program

| Test item | Method | Description |
| :--- | :--- | :--- |
| SOLDERABILITY | JESD-22, B102 | $5 \mathrm{Sec}, 245^{\circ} \mathrm{C}$ |
| HOLT | JESD-22, A108 | $1000 \mathrm{Hrs}, \mathrm{Bias} @ 125^{\circ} \mathrm{C}$ |
| PCT | JESD-22, A102 | $168 \mathrm{Hrs}, 100 \% \mathrm{RH}, 2 \mathrm{~atm}, 121^{\circ} \mathrm{C}$ |
| TCT | JESD-22, A104 | $500 \mathrm{Cycles},-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$ |
| ESD | MIL-STD-883-3015.7 | VHBM $\geqq 2 \mathrm{KV}, \mathrm{VMM} \geqq 200 \mathrm{~V}$ |
| Latch-Up | JESD 78 | $10 \mathrm{~ms}, 1_{\mathrm{tr}} \geqq 100 \mathrm{~mA}$ |

## Customer Service

Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax: 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838


[^0]:    ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

